Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Russ J Bioorg Chem ; 49(2): 412-415, 2023.
Article in English | MEDLINE | ID: covidwho-2322062

ABSTRACT

The ionizable lipid ALC-0315, ((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate), is a component of the lipid matrix of the prophylactic SARS-CoV-2 mRNA vaccine produced by Pfizer/BioNTech. This lipid ensures efficient vaccine assembly, protects the mRNA from premature degradation, and promotes the release of the nucleic acid into the cytoplasm for its further processing after endocytosis. The present work describes a simple and economical method for the synthesis of the ALC-0315 lipid, which can be taken advantage of in mRNA vaccine production.

2.
Russian Journal of Bioorganic Chemistry ; 48:S23-S37, 2022.
Article in English | Scopus | ID: covidwho-2284490

ABSTRACT

Abstract: Potential nonameric epitopes of CD8+ T lymphocytes were selected from the composition of structural, accessory, and nonstructural proteins of the SARS-CoV-2 virus (13 peptides) and a 15-mer epitope of CD4+ T lymphocytes, from the S-protein, based on the analysis of publications on genome-wide immunoinformatic analysis of T-cell epitopes of the virus (Wuhan strain), as well as a number of clinical studies of immunodominant epitopes among patients recovering from COVID-19 disease. The peptides were synthesized and five compositions of 6–7 peptides were included in liposomes from egg phosphatidylcholine and cholesterol (~200 nm size) obtained by extrusion. After double subcutaneous immunization of conventional mice, activation of cellular immunity was assessed by the level of cytokine synthesis by splenocytes in vitro in response to stimulation with relevant peptide compositions. Liposomal formulation exhibiting the best result in terms of the formation of specific cellular immunity in response to vaccination was selected for further experiments. Evaluation of the protective efficacy of this formulation in an infectious mouse model showed a positive trend in the frequency of occurrence of hyaline-like membranes in the lumen of the alveoli, as well as a somewhat lower severity of microcirculatory disorders. The latter circumstance can potentially help reduce the severity of the disease and prevent its adverse outcomes. A method to produce liposome preparations with peptide compositions for long-term storage is under development. © 2022, Pleiades Publishing, Ltd.

SELECTION OF CITATIONS
SEARCH DETAIL